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SUMMARY. In case—control family studies with survival endpoint, age of onset of discases can be used
to assess the familial aggregation of the discase and the relationship between the disease and genetic or
environmental risk factors. Because of the retrospective nature of the case—control study. methods for ana-
lyzing prospectively collected correlated failure time data do not apply directly. In this article, we propose a
semiparametric quasi-partial-likelihood approach to simultaneously estimate the effect of covariates on the
age of onset and the association of ages of onset among family members that does not require specification
of the baseline marginal distribution. We conducted a simulation study to evaluate the performance of the
proposed approach and compare it with the existing semiparametric ones. Simulation results demonstrate
that the proposed approach has better performance in terms of consistency and efficicucy. We illustrate the

methodology using a subset of data from the Washington Ashkenazi Study.
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1. Introduction

Case—control family studies have been used to assess the fa-
milial aggregation of a disease and the relationship between
the disease and genetic or environmental risk factors. Such
a case—control family study identifies a sample of cases who
develop the disease of interest and an independent sample
of controls who are free of the disease at the time of as-
certainment. From each identified individual. hereafter called
proband, information collected includes disease outcomes (age
of onset or age of censoring) and risk factors of the proband
and the relatives. For rare diseases, the case—control design
provides an efficient way 1o ascertain a large number of cases
in a short period of time.

It is standard in the survival analysis to treat the incidence
and age of onset as one composite disease outcome. Then the
familial aggregation captures not only the correlation of the
incidence but also the correlation between the ages of onset.
Chatterjee and Shih (2001) develop a bivariate model sepa-
rating the incidence and age of onset of disease. In this article,
we do not separate the two types of expression for a disease
but take the standard approach of using the composite dis-
ease outcome. Several statistical issues arise when analyzing
data collected from such a case-control family study. Meth-
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ods that fail to account for the available age of onset may lose
an important feature of the data. Strong correlation in early
ages among family members. e.g.. often indicates genetic pre-:
disposition. In addition, individuals free of disease at the time
of ascertainment may develop the discase at a later time. If
the information on age of onset and the effect of censoring are
ignored and the outcomes are simply classified as diseased or
nondiseased, then the degree of familial aggregation may be
underestimated (MacLean et al.. 1990) and the estimators of
the covariate effect on the onset of the disease may lose ef-
ficiency. Further, ages of onset of the relatives are correlated
due to the genes and environments they share. We need to
account for such a correlation when studying the association
between the risk factors and disease and use it to assess the
familial aggregation of the disease. Incorporating the age-of-
onset information, however, may be challenging due to the
retrospective sampling of the probands. Recent advancement
of methodology on the analysis of correlated survival time
data (Shih and Louis, 1995; Prentice and Hsu, 1997), on the
other hand, can be used to estimate familial association but
requires that the data be collected from prospective studies
and form, at least approximately, a random sample of the
population and thus cannot be applied directly to the case-
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control family studies. Prentice and Breslow (1978) propose a
method for analyzing matched survival time data from case—
control studies. Though the method can be used to estimate
the effect of risk factors on survival, it does not estimate the
familial association.

Recently, Li. Yang, and Schwartz (1998) proposed a para-
metric likelihood approach that addresses the above-men-
tioned issues when analyzing data collected from case—control
family studies. The purpose of this article is to propose a semi-
parametric counterpart for studying the association between
the disease onset and risk factors and assessing the familial
association in age of onset of disease. With a specified model
for the bivariate failure time distribution, we propose an iter-
ative procedure to estimate the marginal baseline distribution
nonparametrically. For a given marginal baseline distribution,
we propose a quasi-partial-likelihood approach to estimate the
paraineters that measure the relationship between risk factors
and disease outcome and strength of familial association.

The rest of the article is organized as follows. In Section 2.
we review the likelihoods considered by Whittemore (1995)
and Li et al. (1998). In Section 3, we propose an iterative
method for estimating the marginal baseline distribution and
a quasi-partial-likelihood for estimating the covariate effects
and familial association. In Sections 4 and 5, we use simulation
and an analysis of data from the Washington Ashkenazi Study
(WAS) to illustrate the proposed method. A discussion follows
in Section 6 to conclude the article.

2. A Likelihood Approach for Age-of-Onset Data from
. Case—Control Family Studies
Consider a matched case control family study where one case
proband is matched in age with one control proband. Each
matched set contains one case family and one control fam-
ily. and there are a total of n matched set. Let (T;, A;) =
{tiye. ... Live, ) (B0 oo dim )}t =1,....2n denote the dis-
case onteomes and Z; = (2. ..

s Zign, ) the associated covari-
ates for the ith family of size m; + 1, with the first component
in the vectors corresponding to the proband. The binary vari-
able 8;; indicates whether the individual developed the disease
(8j = 1) or not (3;; = 0). and t;; denotes the age of onset if
d;; = 1 and censoring time if 6;; = 0. Let the first n families
be case families and the remaining families be coutrol families.
By design. ;5 = L dipn0 = 0, and tig = tin,0.0 = 1.0,
n. The retrospective likelihood for the case-control family
study is

2n

L= HPr{(Tfl.A.,;‘l) 2y | (ti0,8i0) } »

=1

where the superscript —1 denotes a vector with its first com-
ponent removed. The likelihood can be factored as

2n,
-1
L= H Pr{zig | (tio. 8i0)} Pr{Z;" | zi0, (ti0, 8i0) }
i=1
X Pr{(Ti—17Afl) t Zi, (ti0,8:0) } - (1)
Now we make the reproducibility assumption for marginal
models (Whittemore, 1995), i.e., Pr{(ti;, di;) | Z:} = Pr{(t;,
di5) | zij}. Because, under this assumption, Z,i‘1 is condition-
ally independent of (t;0,di0) given z;, the second factor in

the likelihood expression (1) simplifies to Pr{(Z;)"! | zio}
and hence can be ignored because it does not depend on the
parameters of interest. Heretofore, in the likelihood expres-
sion (1), we will denote the first factor by L; and the third
factor by Lg. The decomposition of L into the product of L;
and Ly implies that an individual’s covariates do not affect
another family members’ ages of onset, but they may affect
the familial association of ages of onset. For example, if two
family members have identical covariates, then their ages of
onset are likely to be more similar than if they have very
different covariates.

Although the above retrospective likelihood conditions on
the proband’s data, it does not take into account the matching
of age of onset. Li et al. (1998) account for the matching by
replacing L; with the conditional likelihood of Prentice and
Breslow (1978). Also, they use the Clayton model (Clayton.
1978) to specify the multivariate distribution of ages of onset
for Ly. Specifically, assume the marginal distribution of age
of onset for each individual follows a proportional hazards
model, with the hazard function given by

At ] 2) = Mo(t) exp(B'z). (2)

Suppose there are k& distinct ages of onset among the case
probands and. at the ith age, there are k; case probands and [;
control probands (for our case of one-to-one matching, k; = l;)
selected with covariates 219,...,25,,0 and 2g,4+10,...,
Z),+1,,0, respectively. Then, at the ith age, the probability
that covariates z)¢,..., 2,0 correspond to the cases given
the A; +1; covariates under the proportional hazards model is

exp(8'si)

> ew(ds)

JER(ki L)

(3)

where 8; = zjo+- -+ 2p,0. 85 = 25+ + 25, , and R(k;, 1;)
is the sct of all subsets of size k; from set {1,...,k; +{;}. The
conditional likelihood of Prentice and Breslow (1978) is the
product of (3) over all k distinct ages, given by

k
« X (ﬁ/si)
L5(8) = s ‘
1 LI;I[ Z exp(8's;)

JER(ki L)

The other component in (1), Lg, requires specification of
the joint distribution of the age of onset for the relatives and
proband. The joint survival function from the Clayton model
is given by

Pr(Ty > to, Ty > t1,.... Ty > ty)

) 1/(1—-6)
1-8
=D Silty)' ™ -1 ,
Jj=0
where § = exp(a) > 1 is the association parameter that

has the cross-ratio interpretation (Oakes, 1989) and S; is the
marginal survival pertaining to the jth failure time. Unity of ¢
corresponds to independence, and a value greater than one in-
dicates positive association. Under the proportional hazards
model (2), S;(t) = exp{—Ao(t) exp(B'z;)}, where \o(t) =
I8 Mo(w) du. Assume the censoring time of each individual is
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independent of the age of onset. Under the Clayton model,
Ly is given by

L2(B777 a)

2n d;
=H{ {o<j—1>+2—j}}
J=1

=1

X [Zexp{—l\o(tij;')’)(l - 6) exp(8'zi;)}
j=0
1/(1—0)—d;
_ mi}

X [ﬂ[exp{—/\o(ti;’;'ﬁ(l — 6) exp(B'zi;)}

=0

X Ao(tij: '7) exp(ﬁ/zij)}élJ:\

x exp{Mo(tio; ) exp(B'zi0)}
x {exp(B'zi0)o(tio; 1)} %, (4)

where ~ are the parameters associated with the marginal
baseline distribution and d; = E;':O 6;5. We obtain Lz by
deriving the joint likelihood for the relatives and proband, as-
suming the Clayton model, and then conditioning on T;o = ;0
for the case proband (or Ty > tio for the control proband).
See the Appendix.

Strictly speaking, the likelihood considered by Li et al.
(1998) is not a full but pseudo-likelihood. Nevertheless, L{
accounts for matching and is a valid likelihood for including
the contribution of the data from probands to the estimation
of B. The estimates of (3,+, ) are obtained by maximizing
L$ Lo with respect to (8,7, o).

3. Proposed Method

The likelihood approach in the previous section requires spec-
ification of the marginal baseline distribution up to a finite
number of parameters (-y). In this section, we present a new
method for estimating 3, a, and Ag(-) nonparametrically.

3.1 Model

We begin by assuming covariates are not present. Consider
the hazard function for the age of onset of a relative given
the disease outcome of the proband, denoted by A(t | to, éo)-
Assume the ages of onset for the proband and relative come
from an absolutely continuous distribution. Then A(t | to, 8g),
by definition, can be represented by

At | to,80) = Alt | to, 0)%(t, to)®,

where 1(t, tp) is the cross-ratio function (Oakes, 1989), which
measures the strength of association of two correlated failure
times. Assume the proband and relative have a common
marginal baseline distribution. Then under the class of copula
models (Genest and MacKay, 1986; Marshall and Olkin,
1988; Shih and Louis, 1995) in which a bivariate survival
distribution is specified in terms of the marginal distributions
and a copula function, the conditional hazard function above
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can be expressed by

At | 0,80) = Ao(t)ga{Ao(t), Ao(to) Fa{Ao(t), Ao (to)}",

(5)
where Ag is the baseline cumulative hazard and o is the
assoclation parameter characterizing the copula function.
Functions go and 1o depend on t and {p through Ao(t)
and Ag(iy). The Clayton model considered in the previous
section belongs to the class of copula models and Is
uniquely characterized by the constant cross ratio, i.e.,
ha(Ao(t), Ap(to)) = exp(a) for all t,ty. Its g function is giv-
en by

ga(Ao(t), Ao(to))
_ exp{Ag(t){1 = exp(a)}]
~ exp|Ag(t){1 — exp(a)}] + exp[Ao(to){1 — exp(a)}] = 17

Suppose now the covariates z and zg are recorded for the
relative and proband, respectively. Assume the proportional
hazards model holds for the marginal distribution as in (2).
Then the structure in (5) still holds but with Ag(t) replaced
by Ao(t)exp(8'z), Ao(t) by Ao(t)exp(B'z), and Ag(ty) by
Ao (to) exp(B'zg). The conditional hazard in (5) becomes

A(t | to, 60, 20, 2)
= Ao (t) exp(8'2) (t)ga{Ao(t) exp(B'z). Ao(to) exp(8'20)}.
x Ya{Ao(t) exp(8'z), Ao(to) exp(B'z0)}*. 6)

For the case of the Clayton model, ¢ is still equal to
exp(a). Note that the above conditional hazards model allows
incorporation of the covariates of both the proband and
the relative and the marginal interpretation of the covariate
effects is preserved.

3.2 Estimation

3.2.1 Estimating Ag. For j=1,...,m;and i =1,...,2n, let
Yij(u) = 1(ts; = u), Nyj(u) = &i51(ti; < w), gd (Aoyu) =
go{Ao(w) exp(B'z:;), Ao(tio) exp(B'zi0)}, and ¥d (Ao,u) = .
Ya{Ao(w) exp(B'zij), Ao(tio) exp(B'zi0)}. Also let

2n m; y y
=33 vii(w) exp(B'zi5)9¢ (Ao wiwrd (Ao, u).
i=1 j=1

The structure of (6) suggests that we can estimate Ag
in the spirit of the Nelson-Aalen estimator. We treat
exp(ﬂ'zij)gg (Ao, tij) Zf(Ao,tij)‘s“‘ as the (time-dependent)
risk score for the jth relative in the 4th family, and
50 (B,a, Ag,u) is the sum of the risk scores of the relatives
from all the families at time u. Then for a fixed value of (8, ),
an analog to the Nelson—Aalen estimator for Ag is the solu-
tion to

t
1
Ao(t)=/0 SO B.a ho.w) dN4 4 (u), (M

where Nyt(u) = £27, E;.'f_;'l Ni;(u). Note that, since 5©
involves the unknown baseline cumulative hazard Ag, iter-

ation is required to solve (7) for Ao.
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3.2.2 Estimating o and 3. We begin by treating 3 as fixed
and consider a quasi-partial-likelihood approach for estimat-
ing o, in which only the data on (relative, proband) pairs
contribute to the estimation and the higher order correlation
is ignored. With the risk score exp(,@'zij)gf,f (Ag,ts5) x

< (Ao, tij)o“’ for each relative, based on the same argument
as Cox (1972), we can form the partial likelihood for « as

, coo . §iy
ip= H H exp(8'zi5) 9 (Ro, ti) 0 (Ao, ti)%0 } ’ '

i=1j=1 SO/(B, o, Ao, ti5)

(8)

The ~over Lp is used to indicate that an estimate of Ag is
inserted in the likelihood. The estimate of « is obtained by
maximizing f}p with respect to a.

An alternative approach for estimating o that we will
evaluate is to incorporate all the correlation information
in the likelihood. Specifically, we can estimate o using the
full likelihood but with the marginal baseline distribution
estimated by (7). For example, under the Clayton model,
following (4), we can estimate the scalar o by maximizing
the following quasi-likelihood:

i
S P Y: 7
2n | my; (1-9)

Lo TS expf=Ro(tiy)(1 = 8) exp(8'zij)} — mi

i=1] j=0

[,
< | [J1oG-v+2-)}
J=1

x H[CXP{—A()(WJ')(I — 9) exp(8'zi5)} exp(' 2;)]
LJ:()

)

By incorporating the whole correlation structure, L should
be more efficient in estimating the association parameter «
than Lp Computationally. however, [:,, is simpler. Besides, if
the familial association varies over pairs, then Lp is readily
extended to incorporate the pair-dependent association, but
constructing a joint distribution for L would be complex.

Up till now, B has been treated as fixed. Suppose now we
are interested in estimating both 8 and « simultaneously.
Either L,, or L can be maximized to obtain an estimate of 3.
However, both likelihoods ignore the contribution from the
probands data. Similar to Li et al. (1998), we will include the
conditional likelihood L{ in the estimation of 3. Thus, we
estimate 3 by maximizing either L,L§ or LL{.

Because estimating Ag and (3, @) requires knowledge of the
other component, iteration is needed in finding the solution
(A(),(},,B). With an initial guess ([\(()0)7 d(o),ﬁ(o)), we update
Ay by

¢

N ' 1

AV TV = / _ _ dNsi(u). (10)

0 Jo 8O3, &), AL )

We keep updating Ao using (10) until convergence. Then
with the current estimate of Ag, we maximize either LpLc or
LL. with respect to (8, a) to update (ﬂ("),d(”)). With the
updated estimate for (3, a), we go back to (10), and iteration

proceeds until (Ag, 3, &) reaches convergence. Further work is
needed to develop the asymptotic theory for the semiparamet-
ric estimation method we described. In our illustration shown

later, we use the bootstrap method to obtain the standard
errTors.

4. Simulation Study

We conducted a simulation study to evaluate the performance
of the proposed method. In the following, we describe how
to generate a sample of case-control family data. We first
generated the correlated failure times for each family from
the Clayton model, in which the marginal distribution follows
a Weibull model with baseline survival function Sg(t) =
exp{—(.013t)>148} and the cross ratio exp(a) ranges from
1.5 to 3 (« ranges from .406 to 1.10). The censoring time of
each individual is independent of the age of onset and follows
a normal distribution with mean 65 and standard deviation
12, which results in approximately 40% censoring. Ages of
onset/censoring times were generated for 10,000 families.
Then 200 case probands were randomly selected from the
pool of 10,000 families. Each case proband is matched with
a control proband within 1-year of age. Once these probands
are identified, data on their relatives are included. There are
a total of 400 families. The simulation was repeated 500 times
for each scenario considered.

We fit the data using the proposed method assuming
the Clayton model. We compare the proposed method with
three alternative semiparametric methods for our problem
considered by Hsu et al. (1999): the Cox model, a stratified
Cox model, and the pseudo-partial-likelihood approach of Hsu
et al. (1099).

The first method (Cox model) is a proportional hazards
model for the age of onset of the relatives with their proband’s
age and disease status treated as the covariates, i.e.,

Xij(t | B0y 6i0) = Ao(t) exp(Botio + adio + B'zi5).  (11)

The second method (stratified Cox model) is based on the
stratified conditional hazard given by

Aij(t | tioy 8i0) = Mai(t) exp(adio + B zi5). (12)

We fit this model by stratifying on the proband’s integer age.
All the individuals with the same integer age of proband form
the same stratum.

The third method (pseudo-partial-likelihood) assumes the
stratified Cox model (12) holds and forms a pseudo-partial-
likelihood for 3 and « by comparing the risk scores R;; =
exp{ad;o +,6’z.ij} among all the pairs of relatives of different
families in each matched set. The likelihood has the following
representation,

Lppl(lav O‘)

n m; Mnis Ris i
— 1]
- H H H {Rij + I(tignk = tij) Ritnk }

i=1j=1 k=1

Oign.k
% RH—n,k bk
R'i,+n,k: + I(tij > ti+n,k)R'ij

Note that the marginal hazard (2) is a special case of the
conditional hazards (11) and (12) by letting t;o = 0 and
;o = 0. However, the interpretation of 8 in (11) and (12)
is conditional on the proband’s survival data. Besides, it is
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Figure 1. Cumulative risk vs. age of onset. Solid line: true

distribution: dotted lines: estimated distributions from 250
simulations.
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not clear how one incorporates the covariates of the proband
in these approaches. Furthermore, if the disease status of
the proband, 8¢, has a proportional effect on the conditional
hazard of the relative as specified, then the only bivariate
model for continuous data satisfying such a property is the
Clayton model (Clayton, 1978). in which the proband’s age
cannot be factored out from the relative's age as specified in
(11).

We first consider bivariate data where cach proband has
only one relative. Figure 1 exhibits the estimated bascline
survival function estimated from the proposed approach with
exp(a) = 2, where the dotted lines arc estimated distributions
from 250 simulations and the solid line is the true distribution.
1t shows that the marginal baseline distribution is estimated
well and there is no apparent bias. Table 1 summarizes the
simulation result for the parameter estimators. The upper
panel presents the simulation result when there are no co-
variates. The relative bias is defined as the difference between

Table 1

Simulation results for bivariate dat

a generated from the Clayton model

Proposed Stratified Pseudo-partial-
method Cox Cox likelihood
Without Covariates
a (= .406)
Relative bias (%) -.5 -2 -2.7 -1.0
Variance 016 027 .040 048
Efficiency (%) 100 59 40 33
Bo
Mean -.011
Variance .00004
o (= .693)
Relative bias (%) 9 2 7 0
Variance .024 032 .051 063
Efficiency (%) 100 75 46 37
Bo
Mean -.017
Variance .00005
o (=1.10)
Relative bias (%) 5 -4 5 -3
Variance 021 .029 .044 063
Efficiency (%) 100 72 47 33
Bo
Mean —.031
Variance .00003
With Covariates
a (= .693)
Relative bias (%) A4 —-10 -9 - -7
Variance .015 .023 .038 .056
Efficiency (%) 100 64 39 26
B(=1
Relative bias (%) A4 8 8 10
Variance .013 .021 .035 125
Efficiency (%) 100 61 36 10
Bo
Mean ~.02
Variance .00004
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the simulated mean and true parameter value divided by the
true value. Efficiency is defined by the ratio of the simulated
variance of the proposed method to that of the specific ap-
proach. The relative biases for « from all these approaches
are close to zero, but the estimators vary in efficiency. As
expected, due to high stratification, estimators from strati-
fied Cox model and pseudo-partial likelihood are not efficient
in all the « values considered. The Cox model, on the other
hand, has about 25-40% efficiency loss and lends itself to dif-
ficulty of interpretation. i.e., the resulting conditional hazard,
in which the age of onset of the relative does not depend on
the age (,(30 = 0) but only on the disease status of the proband
(o > 0), does not seem plausible under any continuous bivari-
ate distribution with exchangeable margins.

The lower panel presents the simulation result when there
is one binary covariate that operates proportionally on the
marginal hazard with 8 = 1. Pr(z = 1) = .3, and o« = .693.
The estimators of « and B show biases in all except the pro-
posed approach. In addition to biases, there is great efficiency
loss in estimating 3. For example. the pseudo-partial likeli-
hood approach has a variance about 10 times as large as that
of the proposed method.

To compare the performance of the two approaches using
the likelihoods (7) and (8). we generated trivariate failure
time data from the Clayton model. where each proband has
two relatives. As before. we gencrated data for 200 case fam-
ilies and 200 control families. Table 2 shows the simulation
result. Both approaches produce little bias. The approach in-
corporating all the correlation information (likelihood (8)) is
about 20% more efficient than the other one incorporating
only the paired correlation. .

In addition to comparing the proposed approach with the
existing semiparametric approaches, we study the bias likely
incurred by using an ad hoc parametric model to it the base-
line hazard function. In this simulation. the marginal distri-
bution follows a nomnonotone piecewise exponential model.
The values of the hazards are (0.00023, 0.01101, 0.02957.
0.03721, 0.00805, 0.01423. 9.76e—12, 5.5Te—11) with cut-off
age at (30, 40,50, 60.70.80.90). These values of the hazards
were taken from the hazard estimates from the carriers of the
BRCA 1/2 mutations of the Washington Ashkenazi Study
(WAS) (Struewing et al., 1997). The association paramcter
() for the Clayton model is equal to .693. The censoring
mechanisin is kept the same as before. When we assumed the
commonly nsed Weibull model for the baseline hazard, the es-
timate of the association parameter failed to converge. With
the exponential model. the parameter estimate failed to con-
verge in 20% of the replications. For the rest of the 80% of the
replications, the mean of the estimate of « is equal to 1.655.
Finally, with the piecewise exponential model with cut-off age
at (30, 50, 70, 90), the estimate of the association parameter
converged in most (96%) of the replications, with the mean
of estimate equal to .756. As expected, when the assumed
model is very different from the true model, as in the case
of the Weibull and exponential models, the estimator either
fails to converge or, if it converges, has a large bias. When
the assumed model is not so different from the true model,
the bias is smaller, as seen in the final model. The final model
could be further extended to mimic the true model. How-
ever, the estimation would become more difficult and likely
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Table 2
Simulation results for trivariate data generated
from the Clayton model (a = .693)

Approach based Approach based

on (7) on (8)
Relative bias (%) 3 -1
Variance 015 .012
Efficiency (%) 100 122

unstable because it involves simultaneous estimation of many
parameters in the marginal distribution and the association
parameter. In this case. computation of our proposed semi-
parametric approach would be simpler.

The simulation study demonstrates that the proposed
method produces little bias and is highly efficient. In addi-
tion, unlike the other semiparametric approaches. the pro-
posed method can naturally incorporate covariates for both
the relatives and proband in the marginal hazard.

5. Illustration

As an illustration. we construct a case-control family data
set from the WAS study. In this study, more than 5000 volun-
teer Ashkenazi Jews living in the Washington, D.C., area pro-
vided blood samples for genotyping of BRCA1/BRCA2 muta-
tions. They also gave family history information on breast and
other common cancers. We use a subset of the data that con-
tain (mother, daughter) pairs where daughters are noncarrier
volunteers (without any BRCA1/BRCA2 mutations). There
are 193 cases of breast cancer in the volunteers. We matched
these case volunteers with control volunteers on the onset ages
within 5 years. Hence, the data set used for illustration con-
tains 386 mother -danghter pairs. Among the mothers. 15.3%
had breast cancer at some time. Covariates included in the
analysis arc age of first birth (AFB) and parity (‘1’ = 1 or 2
children, ‘0’ > 3 children).

Although in this study only the volunteers were genotyped
and no DNA samples were available on their relatives. Struew-
ing et al. (1997) originally estimated disease risk from the
mutations from the disease history of the relatives of the par-
ticipating volunteers and not from the volunteers themselves.
[t was argued that the volunteers may have a strong survival
effect on their participation in the study as a diseased individ-
nal could participate in the study only if she remained alive
until the study took place. Mothers of the volunteers, how-
ever, were immune to this kind of bias because their data were
collected through the volunteers and a diseased mother could
be included in the study even if she had died from the disease
before the study took place. For the same reason, we did not
include the conditional likelihood L{ of the case-control sam-
ple of the probands in our analysis and estimated the covariate
effects and familial association solely from the quasi-partial-
likelihood, i},,, which conditions on all the data available from
the volunteers. Standard errors of the estimates were obtained
using the bootstrap method, where 500 bootstrap samples
were drawn from mother-daughter pairs with replacement.

The estimation result is presented in Table 3. Although the
size of familial association seems modest (cross ratio = exp(«)
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Table 3
Estimation results for a case-control
sample from the WAS study

At) = Ao(t) exp(Biparity + S2AFB/10)

Estimate Standard error
5 11 28
fn 19 .20
o 37 .26

= 1.45) compared with the well-known effect of a strong famil-
jial component of the disease, it is consistent with the report
by Kaufman and Struewing (1999), who estimated familial
correlation as the effect of family history on the risk of the
disease in the noncarrier volunteers as measured by odds ratio
(estimated as 1.5) in a logistic regression model. Closeness of
the estimates from the two approaches is not surprising given
that, in both approaches, information on familial correlation
comes from the link between volunteer and their relatives.
Chatterjee et al. (2001), on the other hand, estimated famil-
ial correlation using links between the relatives of the same
volunteer and found a stronger familial correlation (cross ra-
tio =~ 2). Although not addressed in this article, the apparent
inconsistency in the magnitude of familial correlation as es-
timated by two different types of data from the same study
poses interesting epidemiologic questions.

The point estimates corresponding to the regression effect
of both age at first birth and parity are consistent with other
studies (Chie et al., 2000). Older age at first birth and fewer
children both are associated with increasing risk of breast
cancer in women. The relative magnitude of the regression
coefficients suggest that, among women who have at leagt one
child, age at first birth is more important than the number
of children for reducing the risk of the disease. Finally, we
note that, although the parameter estimates obtained from
our analysis seem to be consistent with other studies, none of
the estimates are statistically significant due to the small size
of our data, which has a low cancer rate for the mothers.

6. Discussion

We have proposed a quasi-partial-likelihood approach for es-
timating the effects of covariates on the age of onset and fa-
milial association in case-control family studies. Our methods
take into account the retrospective nature of the case-control
study design and use an association structure between ages
of onset for all members of the same family to obtain the es-
timate of the marginal baseline distribution of age of onset.
Our simulation study shows that, compared with the exist-
ing semiparametric approaches, the proposed estimators have
little bias and are highly efficient.

Although the proposed method is postulated under a one-
to-one match setting, it is readily generalized to other case-
control study settings, such as multiple control families
matched to one case family. Development of the asymptotic
theory for the proposed estimators is a topic of ongoing re-
search. It involves modern theory on adaptive estimation for
semiparametric models with correlated data (Bickel et al.,
1993; Murphy, 1994, 1995; van der Vaart and Wellner, 1996).
Finally, the proposed method requires that the covariate in-
formation is available on both the case-control sample and

their relatives. In many applications, however, it may be dif-
ficult or cost prohibitive to obtain covariate information on
some or any relatives of the cases and controls. In this situa-
tion, the covariate data on relatives can he treated as missing.
Future research is merited on extending the proposed method
to account for the possibility of missing covariates.
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RESUME

Dans les études cas-témoins familiales dont le critere de juge-
ment est la survie, on peut utiliser I'age au début de la maladie
pour établir P'existence d’une aggravation familiale de mal-
adie et la relation entre la maladie et les facteurs de risques
génétiques ou environnementaux. Du fait du caractere rétros-
pectif des enquétes cas-témoins. les méthodes établies pour
I’analyse des données de survie corrélées recucillies prospec-
tivement ne s’appliquent pas directement. Dans cet article,
nous proposons une approche semi paramdétrique de quasi
vraisemblance partielle, pour estimer simultanément effet
des covariables sur I'age au début de la maladie et 'association
des ages au début parmi les membres de faunille, qui ne néees-
site pas de spécifier la distribution marginale de basc. Nous
avons réalisé une étude de simulation pour évaluer les perfor- -
mances de la méthode proposée et la comparer aux méthodes
semi-paramétriques qui existent. Ces résultats de simulation
montrent que cette nouvelle approche a des performances
meilleures en terme d'efficacité et de conséquence. Nous il-
lustrons la méthode a partir d'un sous cnscinble de donncdes
extraites de ’étude Washington Ashkenagi.
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APPENDIX

Derivation of (4). The joint survival function of the proband
and m; members of family ¢ is given by

S(tiOy . '1timi | Zl)

mi (1}-6
= Z exp{—Ao(tij;7)(1 ~ 0) exp(8'zi;)} — m;
J=0

Taking the derivative of S(t;0,...,tim, | Z;) with respect
to t;;’s such that d;; = 1 yields the product of the first three
components in (4).

The last component,

exp{Ao(tio; v) exp(B'zi0) Hexp(B' zi0) Ao(tio; 4} %,

is the reciprocal of the likelihood contribution of the proband,
which is needed because Lo is the conditional likelihood of the
family survival data given the proband survival data.



